Classifying imbalanced data sets using similarity based hierarchical decomposition
نویسندگان
چکیده
Classification of data is difficult if the data is imbalanced and classes are overlapping. In recent years, more research has started to focus on classification of imbalanced data since real world data is often skewed. Traditional methods are more successful with classifying the class that has the most samples (majority class) compared to the other classes (minority classes). For the classification of imbalanced data sets, different methods are available, although each has some advantages and shortcomings. In this study, we propose a new hierarchical decomposition method for imbalanced data sets which is different from previously proposed solutions to the class imbalance problem. Additionally, it does not require any data pre-processing step as many other solutions need. The new method is based on clustering and outlier detection. The hierarchy is constructed using the similarity of labeled data subsets at each level of the hierarchy with different levels being built by different data and feature subsets. Clustering is used to partition the data while outlier detection is utilized to detect minority class samples. The comparison of the proposed method with state of art the methods using 20 public imbalanced data sets and 181 synthetic data sets showed that the proposed method’s classification performance is better than the state of art methods. It is especially successful if the minority class is sparser than the majority class. It has accurate performance even when classes have sub-varieties and minority and majority classes are overlapping. Moreover, its performance is also good when the class imbalance ratio is low, i.e. classes are more imbalanced.
منابع مشابه
Improving Imbalanced data classification accuracy by using Fuzzy Similarity Measure and subtractive clustering
Classification is an one of the important parts of data mining and knowledge discovery. In most cases, the data that is utilized to used to training the clusters is not well distributed. This inappropriate distribution occurs when one class has a large number of samples but while the number of other class samples is naturally inherently low. In general, the methods of solving this kind of prob...
متن کاملAn information granulation based data mining approach for classifying imbalanced data
Recently, the class imbalance problem has attracted much attention from researchers in the field of data mining. When learning from imbalanced data in which most examples are labeled as one class and only few belong to another class, traditional data mining approaches do not have a good ability to predict the crucial minority instances. Unfortunately, many real world data sets like health exami...
متن کاملHierarchical fuzzy rule based classification systems with genetic rule selection for imbalanced data-sets
In many real application areas, the data used are highly skewed and the number of instances for some classes are much higher than that of the other classes. Solving a classification task using such an imbalanced data-set is difficult due to the bias of the training towards the majority classes. The aim of this paper is to improve the performance of fuzzy rule based classification systems on imb...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملBeyan, Fisher: Detection of Abnormal Fish Trajectories
We address the analysis of fish trajectories in unconstrained underwater videos to help marine biologist to detect new/rare fish behaviours and to detect environmental changes which can be observed from the abnormal behaviour of fish. The fish trajectories are separated into normal and abnormal classes which indicate the common behaviour of fish and the behaviours that are rare/ unusual respect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 48 شماره
صفحات -
تاریخ انتشار 2015